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Even-order Legendre polynomial (PN) expansion 
approximations of the neutron transport equation have 
historically seen only limited practical application.  
Research in the last decade [1] has resolved one of the 
historical theoretical objections [2] to the use of even-
order PN approximations in planar geometry, namely the 
ambiguity in the prescription of boundary conditions as a 
result of an odd number of unknowns.  This research also 
demonstrated the P2 approximation to be more accurate 
than the P1 approximation in planar geometry away from 
boundary layers and material interfaces.  Neither the P1 
nor the P2 approximation is convincingly more accurate 
near material interfaces.  This progress motivated the 
reexamination of the multidimensional simplified P2 (SP2) 
approximation [3], the development of P2 approximations 
for planar geometry stochastic transport problems [4], and 
the examination of the P2 and SP2 approximations as a 
synthetic acceleration technique for the discrete ordinates 
equations. [5] 
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Here ( )xQ  is a neutron source, ( ) ( ) ( )xxx sntan σσσ −= , 
2,1,0=n , are the “absorption” cross sections obtained by 

subtracting the Legendre angular moments of the 
differential scattering cross section from the total cross 
section, and ( )x0φ  is the neutron scalar flux.  Eq. (1) is a 
standard diffusion equation (with a modified absorption 
cross section and source) for the modified scalar flux 
unknown ( )xφ̂ .  The neutron scalar flux, ( )x0φ , is readily 

obtained from the unknown  using Eq. (4).  Defining 
the parameter 

( )xφ̂
( )xρ  by Eq. (5) gives the P2 approximation 

and setting ( ) 0=xρ  results in the standard P1 
approximation.  Marshak vacuum boundary conditions for 
the P2 approximation are given by [1] 

The major remaining objection to even-order PN 
approximations is that the scalar flux distributions 
obtained using these approximations can exhibit large 
spatial discontinuities at material interfaces and source 
discontinuities.  In contrast, the odd-order PN 
approximations typically utilized give spatially 
continuous scalar flux distributions at these locations.  In 
this paper, we propose a mixed P2-P1 angular 
approximation designed to take advantage of the 
improved accuracy of the P2 approximation in the interior 
of material regions and near external boundaries while 
retaining the continuous solutions obtained by the P1 
approximation near material interfaces and source 
discontinuities.  We present numerical results from a 
series of eigenvalue calculations to demonstrate the 
accuracy of the mixed P2-P1 angular approximation. 
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In this paper, we propose to define the parameter 
( )xρ  by the equation  

( ) ( )
( ) ( ) ( )( )[ ] ,exp1
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The P2 angular approximation to the planar geometry 

neutron transport equation in a spatial domain Lx ≤≤0  
can be written as [1]: 

where  is a user-specified parameter and p ( )xdi  is the 
distance to the nearest material interface or source 
discontinuity at a given spatial point x .  For 0=p , the 
pure P1 approximation is recovered for all x ; for ∞→p , 
the pure P2 approximation is obtained for all x .  With this 
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representation for ( )xρ  and 1  (e.g. ∞<<≤ p 5≈p ), the 
P1 approximation is used at material interfaces and source 
discontinuities and the angular approximation transitions 
smoothly to the P2 approximation within approximately 
one mean free path from the material interface or source 
discontinuity.  The numerical solution of the mixed P2-P1 
equations requires essentially the same computational 
expense as the solution of the standard P1 equations. 
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NUMERICAL RESULTS 

 
In this section, we compare the accuracy of the mixed 

P2-P1 angular approximation to the pure P1 and P2 angular 
approximations for a series of two-region k-eigenvalue 
problems (numerical test problem IV.F of Ref. [1]).  The 
test problem is a two-region, isotropically scattering 
critical slab 5.0 cm thick, with vacuum left and right 
boundaries and cross-section discontinuities at  = 2.5 
cm.  The mathematical description of the transport 
problem is 
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( ) 1,0,0 ≤=µψ    (8b) 
( ) 0,0,5 <−= .µψ    (8c) 

The material properties are = 1.0 cm-1 across the two 

regions of the slab, variable in the left 

region,  (see Table I), and  0.99 
cm

( )x

.

critical

=

5
.20 <≤ x

( )xfνσ
r
fνσ =

( ) =x

1

-1 in the right region, 2 .  The fission cross 
section  takes the values  = 0 in the left 

region and  in the right region of the slab.  

The critical values  for each value of  are 
given in Table I (taken from Ref. [1]) and give S16 
discrete ordinates transport values of . 

The percent relative errors in the computed 
eigenvalue obtained using the pure Pk 1 and P2 angular 

approximations to Eqs. (8) are shown in Table I.  The 
accuracy of both approximations degrades as  
decreases, i.e. as the left region becomes less diffusive 
and the magnitude of the material property discontinuity 
increases.  However, the eigenvalues obtained using the 
P2 approximation are significantly more accurate than 
those obtained using the P1 approximation for all values 
of .  The scalar flux distributions surrounding the 
material discontinuity are shown in Fig. 1.  The P

l
sσ

1 scalar 
flux is continuous at the material interface but is 
significantly in error both near the interface and away 

from the interface.  The P2 scalar flux is discontinuous at 
the material interface but is more accurate than the P1 
solution away from the interface. 

The transport problem was also solved using the 
mixed P2-P1 approximation with three values of the 
parameter  of Eq. (7),  = 2.5, 5, and 10.  The scalar 
flux distributions near the material interface obtained 
using the mixed P

p

p

p

p

2-P1 approximation are shown in Fig. 1.  
Larger values of  give scalar flux distributions with 
much of the character of the P

p

p

2 solution except they are 
spatially continuous at the material interface.  Smaller 
values of  give more diffusive scalar flux solutions.  
The percent relative errors for the  eigenvalues obtained 
using the mixed P

k
2-P1 approximation are shown in Table 

I.  The mixed P2-P1 approximation is more accurate than 
the P1 approximation for all values of the parameter  

and  considered.  For this test problem, smaller values 
of the parameter  give more accurate results for the  
eigenvalue than larger values.  With the exception of the 

 case, the mixed P

p

k

l
sσ

.0= 99l
sσ 2-P1 approximation is more 

accurate than both the P1 and the P2 approximations for all 
values of the parameter .  

 
CONCLUSIONS 

 
In this paper, we showed that the P2 approximation 

could be modified to give spatially continuous scalar flux 
solutions at material interfaces and source discontinuities.  
The proposed modification uses the P1 angular 
approximation at material interfaces and source 
discontinuities and smoothly transitions to the P2 
approximation within approximately a mean free path 
from the interface.  Neither the P1 nor the P2 
approximation is convincingly more accurate near 
material interfaces, so the P1 approximation can be 
utilized at these locations to give spatially continuous 
results.  Numerical results from a series of k-eigenvalue 
test problems demonstrate that the mixed P2-P1 
approximation can yield improvements in accuracy over 
both the pure P1 and P2 approximations employed alone. 
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Fig. 1. Scalar flux near material property discontinuity for  case. 6.0=l

sσ
TABLE I. Percent Relative Errors in the Criticality Eigenvalue k . 
   mixed P2-P1 

critical
f

r
f νσνσ =  P1 P2 5.2=p  5=p  10=p  

0.1408299 -8.54 +0.19 -1.66 -0.70 -0.23 
0.1650953 -9.86 +1.58 -0.68 +0.50 +1.07 
0.1803974 -11.13 +2.57 -0.20 +1.21 +1.90 
0.1903208 -12.09 +3.29 +0.06 +1.65 +2.46 
0.1974249 -12.84 +3.86 +0.21 +1.95 +2.87 
0.2028380 -13.45 +4.34 +0.30 +2.16 +3.19 
0.2071421 -13.96 +4.76 +0.35 +2.33 +3.44 
0.2106719 -14.40 +5.12 +0.38 +2.46 +3.66 
0.2136351 -14.79 +5.45 +0.39 +2.56 +3.84 
0.2149489 -14.96 +5.60 +0.40 +2.61 +3.92 
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